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Words are everywhere!
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• There are many ways we can use computer 
algorithms to do useful things with language

Image source: KC Karnes on CleverTap 



Word Embeddings
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• Word embeddings: low-dimensional vectors that 
capture some semantic and syntactic information 
about individual words



Research Questions

• Are word embeddings stable across variations in 
data, algorithmic parameter choices, words, and 
linguistic typologies? 

• How does our knowledge of stability and other 
word embedding properties affect tasks where 
word embeddings are commonly used? 

• How does our knowledge of stability and other 
word embedding properties affect our usage of 
embeddings?
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Embedding Algorithms
• Context-free output embeddings = produce one 

embedding per word, regardless of word context 

• Contextualized output embeddings = produce 
separate embeddings for the same word, 
depending on context
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The word koala comes from… 
…the koala is recognized worldwide… 
…often miscalled the koala bear…
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Embedding Algorithms
• Contextualized output algorithms require 

computational resources and data

• In some scenarios, this isn’t feasible: small 
datasets from digital humanities, low-resource 
languages
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Regression Models

9Image source: https://en.wikipedia.org

Input 
features of 

interest
Metric of 
interest

Fit a regression model

Use the weights of the model 
to learn about how the 

features relate to our metric 
of interest!

1. Background

https://en.wikipedia.org/
https://en.wikipedia.org/


Regression Models
• Ridge regression adds a regularization term 

• The “goodness of fit” of a regression model is 
measured using R2, the coefficient of determination

10Image source: Fernando Wittmann on StackExchange

1. Background

https://stats.stackexchange.com/users/150399/fernando-wittmann
https://stats.stackexchange.com/users/150399/fernando-wittmann
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The Problem

12

low frequency = 
low stability

high frequency = 
high stability

???

2. Stability in English

• Many common embedding algorithms have large 
amounts of instability



What is Stability?
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What is Stability?
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Curriculum Learning
• Curriculum learning (order of training data given to an 

algorithm) is important

2. Stability in English
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• Stability within domains is greater than across domains

Domains
2. Stability in English
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• Overall, GloVe is the most stable embedding algorithm

Algorithms
2. Stability in English



Takeaways
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• Use GloVe 

• Learn a good curriculum for word2vec 

• Use in-domain embeddings whenever possible 

2. Stability in English
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3. Stability in Many Languages

Linguistic Properties
• Key Idea: Look at how linguistic properties of 

individual languages are related to stability 

• World Atlas of Linguistic Structures (WALS): expert-
curated database of phonological, lexical, and 
grammatical properties for over 2,000 languages

  - Does a language have a gender system? 
  - Does a language use suffixing? 
  - What is the subject, verb, object order?



Data
• Wikipedia: 40 languages 

• Bible: 97 languages (at least 75% of Bible present)

21Image source: https://en.wikipedia.org, http://clipart-library.com

3. Stability in Many Languages
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Embeddings
• Wikipedia - 5 downsamples without replacement 

(100,000 sentences each), GloVe embeddings 

• Bible - w2v with a single downsample and 5 
different random seeds
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3. Stability in Many Languages



Embeddings
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French Bibles
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3. Stability in Many Languages

• Multiple French translations (w2v with 5 random seeds) 

• We except to see similar stability pattern



Regression Modeling
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• Filtered to include languages and WALS properties 
with enough data: 37 languages, 97 properties 

• Correlated WALS features grouped together 

• Output: stability of all words in a language, averaged

WALS 
features

Average 
stability of 

a language

Fit a regression model

3. Stability in Many Languages



Model Evaluation
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• R2 score = 0.96 (very good) 

• Leave-one-out cross-validation on all languages = 
average absolute error of 0.62 ± 0.53 

• Baseline of average stability on all languages = 
average absolute error of 0.86 ± 0.55

3. Stability in Many Languages



Suffixes & Prefixes
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3. Stability in Many Languages

More affixing associated with lower stability.

Weakly suffixing (inflectional 
morphology) - 5 languages

Little affixing (inflectional 
morphology) - 5 languages

Strong suffixing (inflectional 
morphology) or tense-aspect 

suffixes - 24 languages



Gendered Languages
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3. Stability in Many Languages

No gender system associated with higher stability.

Some Gender System
- 9 languages

No Gender System
- 12 languages



Takeaways
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• We capture relationships between linguistic 
properties and average stability of a language 

• More affixing associated with lower stability 

• Languages with no gender system tend to have 
higher stability

3. Stability in Many Languages
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Batching
• Key Idea: Look at different batching and curriculum 

learning strategies for w2v for three different tasks
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4. Batching & Curriculum Learning



Curriculum Learning
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Default order of Wikipedia sentences

Descending order by sentence length 
(longest to shortest)

Ascending order by sentence length 
(shortest to longest)

4. Batching & Curriculum Learning

• Key Idea: Look at different batching and curriculum 
learning strategies for w2v for three different tasks



Tasks
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4. Batching & Curriculum Learning



Text Classification
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4. Batching & Curriculum Learning

• Smallest dataset: Real Life Deception (96 training 
sentences)

Ac
cu

ra
cy

On the dev set, ascending curriculum with 
cumulative batching is best



Phrase Similarity
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4. Batching & Curriculum Learning

Descending curriculum with cumulative batching is 
best



Takeaways
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• One strategy does not perform equally well on all 
tasks 

• Cumulative batching outperforms basic batching 

• For same tasks, tuning batching and curriculum 
learning can substantially increase performance

4. Batching & Curriculum Learning
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BERT
• Popular contextualized output embedding 

algorithm

38

5. Analyzing BERT



Stability for BERT?
• Use paraphrases! 

• Paraphrases naturally control for word semantics 

• Paraphrase Database (PPDB) - word alignment, 
some human annotations, automatic quality score
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the goals of the world summit

the objectives of the world summit

5. Analyzing BERT



Phrase-level Embeddings
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5. Analyzing BERT

• Can BERT distinguish between two phrases that 
are paraphrases and two phrases that are 
unrelated? 

• Use phrase-level embeddings 
• Average together word embeddings to get a 

phrase embedding 
• Take cosine similarity between two phrase 

embeddings 
• Compare cosine similarities to human 

annotations (Spearman’s correlation)



Phrase-level Embeddings
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• BERT does better with longer paraphrases 
• With longest paraphrases, BERT is comparable to 

PPDB score

5. Analyzing BERT



Word-level Embeddings
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Same Different

Aligned

Unaligned

adopted by the general 
assembly at

adopted by the assembly at

, with a special focus on

, with special emphasis on

okay , so everything 's fine

you guys okay over there

between the canadian 
government and

between the government of 
canada and

5. Analyzing BERT



Word-level Embeddings

43

• Highest category: aligned same words 
• No difference between unaligned words and 

aligned different words

5. Analyzing BERT



Distance between Words
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The farther away two words are in a paraphrase, the 
lower cosine similarity they will have

5. Analyzing BERT

Aligned Same Words



1 Synset 5+ Synsets

Polysemy
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5. Analyzing BERT
U

na
lig

ne
d

A
lig
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d

• Not a 
substantial 
difference 
between 
words with 
different 
synsets 

• Aligned words 
more similar 
than 
unaligned 
words



Punctuation
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Question mark and 
dash used in more 

prescribed 
circumstances: 

question mark at 
end, dash at 

beginning

5. Analyzing BERT



Contextualization
• Previously, Ethayarajh [35]: BERT word 

embeddings are more context-specific in higher 
layers 

• Self-similarity: the average cosine similarity 
between a word’s contextualized representations 
across its unique contexts 
• Self-similarity decreases, thus contextualization 

increases 

• Instead of self-similarity, we use cosine similarity 
between words
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5. Analyzing BERT



Contextualization

48

• Decreasing similarity (increasing contextualization) 
for same words; same as previous work 

• Increasing similarity for different words

5. Analyzing BERT



Takeaways
• BERT does a reasonable, but not perfect job 

controlling for semantics in paraphrases 

• BERT correctly handles polysemy in paraphrases 

• Words that are farther apart from each other in the 
paraphrase have lower cosine similarity scores 

• In general, paraphrased words are less 
contextualized than non-paraphrased words. 
Punctuation has highly contextual representations 
in BERT
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5. Analyzing BERT
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Research Questions
• Are word embeddings stable across variations in 

data, algorithmic parameter choices, words, and 
linguistic typologies? 
• Introduced metric of stability 
• Shown that English word embedding spaces are 

surprisingly unstable 
• Drawn out aspects of the relationship between 

linguistic properties and stability for diverse 
world languages 

• Used paraphrases to give insight into 
contextualized output embedding spaces
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6. Conclusion



Research Questions
• How does our knowledge of stability and other 

word embedding properties affect tasks where 
word embeddings are commonly used? 
• Showed that stability of words affects English 

word similarity and part-of-speech tagging (in 
dissertation) 

• Pinpointed linguistic properties related to 
instability 

• Shown how batching and curriculum learning 
affect performance of text classification and 
sentence and phrase similarity
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6. Conclusion



Research Questions
• How does our knowledge of stability and other 

word embedding properties affect our usage of 
embeddings? 
• Given practical suggestions for mitigating 

instability in English word embeddings 
• Suggested linguistic properties as a starting 

point for further research on multilingual 
embeddings 

• Discussed tuning batching and curriculum 
learning for three downstream tasks
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6. Conclusion
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