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Abstract
We consider the task of identifying human ac-
tions visible in online videos. We focus on the
widely spread genre of lifestyle vlogs, which
consist of videos of people performing actions
while verbally describing them. Our goal is to
identify if actions mentioned in the speech de-
scription of a video are visually present. We
construct a dataset with crowdsourced manual
annotations of visible actions, and introduce a
multimodal algorithm that leverages informa-
tion derived from visual and linguistic clues to
automatically infer which actions are visible in
a video. We demonstrate that our multimodal
algorithm outperforms algorithms based only
on one modality at a time.

1 Introduction

There has been a surge of recent interest in detect-
ing human actions in videos. Work in this space
has mainly focused on learning actions from artic-
ulated human pose (Du et al., 2015; Vemulapalli
et al., 2014; Zhang et al., 2017) or mining spatial
and temporal information from videos (Simonyan
and Zisserman, 2014; Wang et al., 2016). A num-
ber of resources have been produced, including
Action Bank (Sadanand and Corso, 2012), NTU
RGB+D (Shahroudy et al., 2016), SBU Kinect In-
teraction (Yun et al., 2012), and PKU-MMD (Liu
et al., 2017).

Most research on video action detection has
gathered video information for a set of pre-defined
actions (Fabian Caba Heilbron and Niebles, 2015;
Real et al., 2017; Kay et al., 2017), an approach
known as explicit data gathering (Fouhey et al.,
2018). For instance, given an action such as “open
door,” a system would identify videos that include
a visual depiction of this action. While this ap-
proach is able to detect a specific set of actions,
whose choice may be guided by downstream ap-
plications, it achieves high precision at the cost of

low recall. In many cases, the set of predefined ac-
tions is small (e.g., 203 activity classes in Fabian
Caba Heilbron and Niebles 2015), and for some
actions, the number of visual depictions is very
small.

An alternative approach is to start with a set
of videos, and identify all the actions present in
these videos (Damen et al., 2018; Bregler, 1997).
This approach has been referred to as implicit data
gathering, and it typically leads to the identifica-
tion of a larger number of actions, possibly with a
small number of examples per action.

In this paper, we use an implicit data gather-
ing approach to label human activities in videos.
To the best of our knowledge, we are the first to
explore video action recognition using both tran-
scribed audio and video information. We focus on
the popular genre of lifestyle vlogs, which con-
sist of videos of people demonstrating routine ac-
tions while verbally describing them. We use these
videos to develop methods to identify if actions are
visually present.

The paper makes three main contributions.
First, we introduce a novel dataset consisting of
1,268 short video clips paired with sets of actions
mentioned in the video transcripts, as well as man-
ual annotations of whether the actions are visible
or not. The dataset includes a total of 14,769 ac-
tions, 4,340 of which are visible. Second, we pro-
pose a set of strong baselines to determine whether
an action is visible or not. Third, we introduce a
multimodal neural architecture that combines in-
formation drawn from visual and linguistic clues,
and show that it improves over models that rely on
one modality at a time.

By making progress towards automatic action
recognition, in addition to contributing to video
understanding, this work has a number of impor-
tant and exciting applications, including sports an-
alytics (Fani et al., 2017), human-computer inter-



Dataset #Actions #Verbs #Actors Implicit Label types

Ours 4340 580 10 X X

VLOG (Fouhey et al., 2018) - - 10.7k X X
Kinetics (Kay et al., 2017) 600 270 - x x
ActivityNet (Fabian Caba Heilbron and Niebles, 2015) 203 - - x x
MIT (Monfort et al., 2019) 339 339 - x x
AVA (Gu et al., 2018) 80 80 192 X x
Charades (Sigurdsson et al., 2016) 157 30 267 x x
MPII Cooking (Rohrbach et al., 2012) 78 78 12 X x

Table 1: Comparison between our dataset and other video human action recognition datasets. # Actions show
either the number of action classes in that dataset (for the other datasets), or the number of unique visible actions
in that dataset (ours); # Verbs shows the number of unique verbs in the actions; Implicit is the type of data gathering
method (versus explicit); Label types are either post-defined (first gathering data and then annotating actions): X,
or pre-defined (annotating actions before gathering data): x.

action (Rautaray and Agrawal, 2015), and auto-
matic analysis of surveillance video footage (Ji
et al., 2012).

The paper is organized as follows. We be-
gin by discussing related work, then describe our
data collection and annotation process. We next
overview our experimental set-up and introduce a
multimodal method for identifying visible actions
in videos. Finally, we discuss our results and con-
clude with general directions for future work.

2 Related Work

There has been substantial work on action recog-
nition in the computer vision community, focusing
on creating datasets (Soomro et al., 2012; Karpa-
thy et al., 2014; Sigurdsson et al., 2016; Fabian
Caba Heilbron and Niebles, 2015) or introducing
new methods (Herath et al., 2017; Carreira and
Zisserman, 2017; Donahue et al., 2015; Tran et al.,
2015). Table 1 compares our dataset with previous
action recognition datasets.1

The largest datasets that have been compiled
to date are based on YouTube videos (Fabian
Caba Heilbron and Niebles, 2015; Real et al.,
2017; Kay et al., 2017). These actions cover a
broad range of classes including human-object in-
teractions such as cooking (Rohrbach et al., 2014;
Das et al., 2013; Rohrbach et al., 2012) and play-
ing tennis (Karpathy et al., 2014), as well as
human-human interactions such as shaking hands
and hugging (Gu et al., 2018).

1Note that the number of actions shown for our dataset
reflects the number of unique visible actions in the dataset
and not the number of action classes, as in other datasets.
This is due to our annotation process (see §3).

Similar to our work, some of these previous
datasets have considered everyday routine actions
(Fabian Caba Heilbron and Niebles, 2015; Real
et al., 2017; Kay et al., 2017). However, be-
cause these datasets rely on videos uploaded on
YouTube, it has been observed they can be poten-
tially biased towards unusual situations (Kay et al.,
2017). For example, searching for videos with
the query “drinking tea” results mainly in unusual
videos such as dogs or birds drinking tea. This bias
can be addressed by paying people to act out ev-
eryday scenarios (Sigurdsson et al., 2016), but this
can end up being very expensive. In our work, we
address this bias by changing the approach used to
search for videos. Instead of searching for actions
in an explicit way, using queries such as “open-
ing a fridge” or “making the bed,” we search for
more general videos using queries such as “my
morning routine.” This approach has been referred
to as implicit (as opposed to explicit) data gath-
ering, and was shown to result in a greater num-
ber of videos with more realistic action depictions
(Fouhey et al., 2018).

Although we use implicit data gathering as pro-
posed in the past, unlike (Fouhey et al., 2018)
and other human action recognition datasets, we
search for routine videos that contain rich audio
descriptions of the actions being performed, and
we use this transcribed audio to extract actions. In
these lifestyle vlogs, a vlogger typically performs
an action while also describing it in detail. To the
best of our knowledge, we are the first to build a
video action recognition dataset using both tran-
scribed audio and video information.

Another important difference between our



methodology and previously proposed methods is
that we extract action labels from the transcripts.
By gathering data before annotating the actions,
our action labels are post-defined (as in Fouhey
et al. 2018). This is unlike the majority of the ex-
isting human action datasets that use pre-defined
labels (Sigurdsson et al., 2016; Fabian Caba Heil-
bron and Niebles, 2015; Real et al., 2017; Kay
et al., 2017; Gu et al., 2018; Das et al., 2013;
Rohrbach et al., 2012; Monfort et al., 2019). Post-
defined labels allow us to use a larger set of labels,
expanding on the simplified label set used in ear-
lier datasets. These action labels are more inline
with everyday scenarios, where people often use
different names for the same action. For example,
when interacting with a robot, a user could refer to
an action in a variety of ways; our dataset includes
the actions “stick it into the freezer,” “freeze it,”
“pop into the freezer,” and “put into the freezer,”
variations, which would not be included in current
human action recognition datasets.

In addition to human action recognition, our
work relates to other multimodal tasks such as vi-
sual question answering (Jang et al., 2017; Wu
et al., 2017), video summarization (Gygli et al.,
2014; Song et al., 2015), and mapping text de-
scriptions to video content (Karpathy and Fei-Fei,
2015; Rohrbach et al., 2016). Specifically, we
use an architecture similar to (Jang et al., 2017),
where an LSTM (Hochreiter and Schmidhuber,
1997) is used together with frame-level visual fea-
tures such as Inception (Szegedy et al., 2016), and
sequence-level features such as C3D (Tran et al.,
2015). However, unlike (Jang et al., 2017) who
encode the textual information (question-answers
pairs) using an LSTM, we chose instead to encode
our textual information (action descriptions and
their contexts) using a large-scale language model
ELMo (Peters et al., 2018).

Similar to previous research on multimodal
methods (Lei et al., 2018; Xu et al., 2015; Wu
et al., 2013; Jang et al., 2017), we also perform
feature ablation to determine the role played by
each modality in solving the task. Consistent with
earlier work, we observe that the textual modality
leads to the highest performance across individual
modalities, and that the multimodal model com-
bining textual and visual clues has the best overall
performance.

Query Results

my morning routine 28M+
my after school routine 13M+
my workout routine 23M+
my cleaning routine 13M+
DIY 78M+

Table 2: Approximate number of videos found when
searching for routine and do-it-yourself queries on
YouTube.

3 Data Collection and Annotation

We collect a dataset of routine and do-it-yourself
(DIY) videos from YouTube, consisting of people
performing daily activities, such as making break-
fast or cleaning the house. These videos also typi-
cally include a detailed verbal description of the
actions being depicted. We choose to focus on
these lifestyle vlogs because they are very pop-
ular, with tens of millions having been uploaded
on YouTube; Table 2 shows the approximate num-
ber of videos available for several routine queries.
Vlogs also capture a wide range of everyday ac-
tivities; on average, we find thirty different visible
human actions in five minutes of video.

By collecting routine videos, instead of search-
ing explicitly for actions, we do implicit data gath-
ering, a form of data collection introduced by
Fouhey et al. 2018. Because everyday actions are
common and not unusual, searching for them di-
rectly does not return many results. In contrast, by
collecting routine videos, we find many everyday
activities present in these videos.

3.1 Data Gathering
We build a data gathering pipeline (see Figure
1) to automatically extract and filter videos and
their transcripts from YouTube. The input to the
pipeline is manually selected YouTube channels.
Ten channels are chosen for their rich routine
videos, where the actor(s) describe their actions in
great detail. From each channel, we manually se-
lect two different playlists, and from each playlist,
we randomly download ten videos.

The following data processing steps are applied:

Transcript Filtering. Transcripts are automati-
cally generated by YouTube. We filter out videos
that do not contain any transcripts or that contain
transcripts with an average (over the entire video)
of less than 0.5 words per second. These videos
do not contain detailed action descriptions so we
cannot effectively leverage textual information.



Extract Candidate Actions from Transcript.
Starting with the transcript, we generate a noisy
list of potential actions. This is done using the
Stanford parser (Chen and Manning, 2014) to
split the transcript into sentences and identify verb
phrases, augmented by a set of hand-crafted rules
to eliminate some parsing errors. The resulting ac-
tions are noisy, containing phrases such as “found
it helpful if you” and “created before up the top
you.”

Segment Videos into Miniclips. The length of
our collected videos varies from two minutes to
twenty minutes. To ease the annotation process,
we split each video into miniclips (short video se-
quences of maximum one minute). Miniclips are
split to minimize the chance that the same action
is shown across multiple miniclips. This is done
automatically, based on the transcript timestamp
of each action. Because YouTube transcripts have
timing information, we are able to line up each
action with its corresponding frames in the video.
We sometimes notice a gap of several seconds be-
tween the time an action occurs in the transcript
and the time it is shown in the video. To address
this misalignment, we first map the actions to the
miniclips using the time information from the tran-
script. We then expand the miniclip by 15 seconds
before the first action and 15 seconds after the last
action. This increases the chance that all actions
will be captured in the miniclip.

Motion Filtering. We remove miniclips that do
not contain much movement. We sample one out
of every one hundred frames of the miniclip, and
compute the 2D correlation coefficient between
these sampled frames. If the median of the ob-
tained values is greater than a certain threshold
(we choose 0.8), we filter out the miniclip. Videos
with low movement tend to show people sitting in
front of the camera, describing their routine, but
not acting out what they are saying. There can
be many actions in the transcript, but if they are
not depicted in the video, we cannot leverage the
video information.

3.2 Visual Action Annotation
Our goal is to identify which of the actions ex-
tracted from the transcripts are visually depicted in
the videos. We create an annotation task on Ama-
zon Mechanical Turk (AMT) to identify actions
that are visible.

We give each AMT turker a HIT consisting of
five miniclips with up to seven actions generated

Figure 1: Overview of the data gathering pipeline.

from each miniclip. The turker is asked to assign a
label (visible in the video; not visible in the video;
not an action) to each action. Because it is difficult
to reliably separate not visible and not an action,
we group these labels together.

Each miniclip is annotated by three different
turkers. For the final annotation, we use the la-
bel assigned by the majority of turkers, i.e., visible
or not visible / not an action.

To help detect spam, we identify and reject the
turkers that assign the same label for every action
in all five miniclips that they annotate. Addition-
ally, each HIT contains a ground truth miniclip
that has been pre-labeled by two reliable annota-
tors. Each ground truth miniclip has more than
four actions with labels that were agreed upon by
both reliable annotators. We compute accuracy
between a turker’s answers and the ground truth
annotations; if this accuracy is less than 20%, we
reject the HIT as spam.

After spam removal, we compute the agree-
ment score between the turkers using Fleiss kappa
(Fleiss and Cohen, 1973). Over the entire data set,
the Fleiss agreement score is 0.35, indicating fair
agreement. On the ground truth data, the Fleiss
kappa score is 0.46, indicating moderate agree-
ment. This fair to moderate agreement indicates
that the task is difficult, and there are cases where
the visibility of the actions is hard to label. To
illustrate, Figure 3 shows examples where the an-
notators had low agreement.

Table 3 shows statistics for our final dataset of



...
03:24 you’re gonna actually cook it
03:27 and it you’re gonna bake it for
03:30 about six hours it’s definitely a
03:32 long time so keep in mind that it’s
03:34 basically just dehydrating it
03:50 after what seems like an eternity in
03:53 the oven you’re going to take it out
03:55 it’s actually dehydrated at that point
03:57 which is fabulous because you can
03:59 pull it right off the baking sheet and
04:01 you’re going to put it on to some
04:03 parchment paper and then you’re
...

Action Visible?

actually cook it X
bake it for X
take it out X
pull it right off X

the baking sheet
put it on to some X

parchment paper

so keep in mind that x
seems like an eternity x

in the oven
dehydrated at that x

point which

Figure 2: Sample video frames, transcript, and annotations.

Videos 177
Video hours 21
Transcript words 302,316
Miniclips 1,268
Actions 14,769
Visible actions 4,340
Non-visible actions 10,429

Table 3: Data statistics.

Train Test Validation

# Actions 11,403 1,999 1,367
# Miniclips 997 158 113
# Actions/ Miniclip 11.4 12.6 12.0

Table 4: Statistics for the experimental data split.

videos labeled with actions, and Figure 2 shows a
sample video and transcript, with annotations.

For our experiments, we use the first eight
YouTube channels from our dataset as train data,
the ninth channel as validation data and the last
channel as test data. Statistics for this split are
shown in Table 4.

3.3 Discussion

The goal of our dataset is to capture naturally-
occurring, routine actions. Because the same ac-
tion can be identified in different ways (e.g., “pop
into the freezer”, “stick into the freezer”), our
dataset has a complex and diverse set of action
labels. These labels demonstrate the language
used by humans in everyday scenarios; because
of that, we choose not to group our labels into a
pre-defined set of actions. Table 1 shows the num-
ber of unique verbs, which can be considered a

Action #1 #2 #3 GT

make sure your skin x x X x
cleansed before you X x X X
do all that x x X x
absorbing all that x x X x

serum when there
move on x x x x

Figure 3: An example of low agreement. The table
shows actions and annotations from workers #1, #2,
and #3, as well as the ground truth (GT). Labels are:
visible - X, not visible - x. The bottom row shows
screenshots from the video. The Fleiss kappa agree-
ment score is -0.2.

lower bound for the number of unique actions in
our dataset. On average, a single verb is used in
seven action labels, demonstrating the richness of
our dataset.

The action labels extracted from the transcript
are highly dependent on the performance of the
constituency parser. This can introduce noise or
ill-defined action labels. Some acions contain ex-
tra words (e.g., “brush my teeth of course”), or
lack words (e.g., “let me just”). Some of this noise
is handled during the annotation process; for ex-
ample, most actions that lack words are labeled as
“not visible” or “not an action” because they are
hard to interpret.



4 Identifying Visible Actions in Videos

Our goal is to determine if actions mentioned in
the transcript of a video are visually represented
in the video. We develop a multimodal model that
leverages both visual and textual information, and
we compare its performance with several single-
modality baselines.

4.1 Data Processing and Representations
Starting with our annotated dataset, which in-
cludes miniclips paired with transcripts and candi-
date actions drawn from the transcript, we extract
several layers of information, which we then use to
develop our multimodal model, as well as several
baselines.

Action Embeddings. To encode each action,
we use both GloVe (Pennington et al., 2014) and
ELMo (Peters et al., 2018) embeddings. When us-
ing GloVe embeddings, we represent the action as
the average of all its individual word embeddings.
We use embeddings with dimension 50. When
using ELMo, we represent the action as a list of
words which we feed into the default ELMo em-
bedding layer.2 This performs a fixed mean pool-
ing of all the contextualized word representations
in each action.

Part-of-speech (POS). We use POS information
for each action. Similar to word embeddings (Pen-
nington et al., 2014), we train POS embeddings.
We run the Stanford POS Tagger (Toutanova et al.,
2003) on the transcripts and assign a POS to each
word in an action. To obtain the POS embeddings,
we train GloVe on the Google N-gram corpus3 us-
ing POS information from the five-grams. Finally,
for each action, we average together the POS em-
beddings for all the words in the action to form a
POS embedding vector.

Context Embeddings. Context can be helpful to
determine if an action is visible or not. We use
two types of context information, action-level and
sentence-level. Action-level context takes into ac-
count the previous action and the next action; we
denote it as ContextA. These are each calculated
by taking the average of the action’s GloVe em-
beddings. Sentence-level context considers up to
five words directly before the action and up to five
words after the action (we do not consider words
that are not in the same sentence as the action);

2Implemented as the ELMo module in Tensorflow
3http://storage.googleapis.com/books/ngrams/books/

datasetsv2.html

Action Con. Visible?

cook things in water 5.00 X
head right into my kitchen 4.97 X
throw it into the washer 4.70 X

told you what 2.31 x
share my thoughts 2.96 x
prefer them 1.62 x

Table 5: Visible actions with high concreteness scores
(Con.), and non-visible actions with low concreteness
scores. The noun or verb with the highest concreteness
score is in bold.

Action Visible in the miniclip?

put my son x
sleep after we x
done dinner x
get comfortable X
pick out some pajamas X
start with my skincare x
cleanse if I or even x

we denote it as ContextS . Again, we average the
GLoVe embeddings of the preceding and follow-
ing words to get two context vectors.

Concreteness. Our hypothesis is that the con-
creteness of the words in an action is related to its
visibility in a video. We use a dataset of words
with associated concreteness scores from (Brys-
baert et al., 2014). Each word is labeled by a hu-
man annotator with a value between 1 (very ab-
stract) and 5 (very concrete). The percentage of
actions from our dataset that have at least one word
in the concreteness dataset is 99.8%. For each ac-
tion, we use the concreteness scores of the verbs
and nouns in the action. We consider the concrete-
ness score of an action to be the highest concrete-
ness score of its corresponding verbs and nouns.
Table 5 shows several sample actions along with
their concreteness scores and their visiblity.

Video Representations. We use YOLO9000
(Redmon and Farhadi, 2017) to identify objects
present in each miniclip. We choose YOLO9000
for its high and diverse number of labels (9,000
unique labels). We sample the miniclips at a rate
of 1 frame-per-second, and we use the YOLO9000
model pre-trained on COCO (Lin et al., 2014) and
ImageNet (Deng et al., 2009).

We represent a video both at the frame level
and the sequence level. For frame-level video fea-
tures, we use the Inception V3 model (Szegedy



et al., 2016) pre-trained on ImageNet. We extract
the output of the very last layer before the Flatten
operation (the “bottleneck layer”); we choose this
layer because the following fully connected layers
are too specialized for the original task they were
trained for. We extract Inception V3 features from
miniclips sampled at 1 frame-per-second.

For sequence-level video features, we use the
C3D model (Tran et al., 2015) pre-trained on the
Sports-1M dataset (Karpathy et al., 2014). Sim-
ilarly, we take the feature map of the sixth fully
connected layer. Because C3D captures motion
information, it is important that it is applied on
consecutive frames. We take each frame used to
extract the Inception features and extract C3D fea-
tures from the 16 consecutive frames around it.

We use this approach because combining In-
ception V3 and C3D features has been shown to
work well in other video-based models (Jang et al.,
2017; Carreira and Zisserman, 2017; Kay et al.,
2017).

4.2 Baselines

Using the different data representations described
in Section 4.1, we implement several baselines.

Concreteness. We label as visible all the ac-
tions that have a concreteness score above a certain
threshold, and label as non-visible the remaining
ones. We fine tune the threshold on our validation
set; for fine tuning, we consider threshold values
between 3 and 5. Table 6 shows the results ob-
tained for this baseline.

Feature-based Classifier. For our second set of
baselines, we run a classifier on subsets of all of
our features. We use an SVM (Cortes and Vap-
nik, 1995), and perform five-fold cross-validation
across the train and validation sets, fine tuning the
hyper-parameters (kernel type, C, gamma) using
a grid search. We run experiments with various
combinations of features: action GloVe embed-
dings; POS embeddings; embeddings of sentence-
level context (ContextS) and action-level context
(ContextA); concreteness score. The combina-
tions that perform best during cross-validation on
the combined train and validation sets are shown
in Table 6.

LSTM and ELMo. We also consider an LSTM
model (Hochreiter and Schmidhuber, 1997) that
takes as input the tokenized action sequences
padded to the length of the longest action. These
are passed through a trainable embedding layer,

Action: brush my teeth
Object detected: toothbrush
WUP(brush, toothbrush) = 0.94

Action: chop my vegetables
Object detected: carrot
WUP(vegetables, carrot) = 0.9

Figure 4: Example of frames, corresponding actions,
object detected with YOLO, and the object - word pair
with the highest WUP similarity score in each frame.

initialized with GloVe embeddings, before the
LSTM. The LSTM output is then passed through
a feed forward network of fully connected layers,
each followed by a dropout layer (Srivastava et al.,
2014) at a rate of 50%. We use a sigmoid activa-
tion function after the last hidden layer to get an
output probability distribution. We fine tune the
model on the validation set for the number of train-
ing epochs, batch size, size of LSTM, and number
of fully-connected layers.

We build a similar model that embeds actions
using ELMo (composed of 2 bi-LSTMs). We pass
these embeddings through the same feed forward
network and sigmoid activation function. The re-
sults for both the LSTM and ELMo models are
shown in Table 6.

YOLO Object Detection. Our final baseline lever-
ages video information from the YOLO9000 ob-
ject detector. This baseline builds on the intuition
that many visible actions involve visible objects.
We thus label an action as visible if it contains
at least one noun similar to objects detected in its
corresponding miniclip. To measure similarity, we
compute both the Wu-Palmer (WUP) path-length-
based semantic similarity (Wu and Palmer, 1994)
and the cosine similarity on the GloVe word em-
beddings. For every action in a miniclip, each
noun is compared to all detected objects and as-
signed a similarity score. As in our concreteness
baseline, the action is assigned the highest score
of its corresponding nouns. We use the validation
data to fine tune the similarity threshold that de-
cides if an action is visible or not. The results are
reported in Table 6. Examples of actions that con-
tain one or more words similar to detected objects
by YOLO can be seen in Figure 4.



Figure 5: Overview of the multimodal neural architecture. + represents concatenation.

5 Multimodal Model

Each of our baselines considers only a single
modality, either text or video. While each of these
modalities contributes important information, nei-
ther of them provides a full picture. The visual
modality is inherently necessary, because it shows
the visibility of an action. For example, the same
spoken action can be labeled as either visible or
non-visible, depending on its visual context; we
find 162 unique actions that are labeled as both
visible and not visible, depending on the miniclip.
This ambiguity has to be captured using video in-
formation. However, the textual modality provides
important clues that are often missing in the video.
The words of the person talking fill in details that
many times cannot be inferred from the video. For
our full model, we combine both textual and visual
information to leverage both modalities.

We propose a multimodal neural architecture
that combines encoders for the video and text
modalities, as well as additional information (e.g.,
concreteness). Figure 5 shows our model architec-
ture. The model takes as input a (miniclip m, ac-
tion a) pair and outputs the probability that action
a is visible in miniclip m. We use C3D and Incep-
tion V3 video features extracted for each frame, as
described in Section 4.1. These features are con-
catenated and run through an LSTM.

To represent the actions, we use ELMo embed-
dings (see Section 4.1). These features are con-
catenated with the output from the video encod-
ing LSTM, and run through a three-layer feed for-
ward network with dropout. Finally, the result of
the last layer is passed through a sigmoid func-
tion, which produces a probability distribution in-
dicating whether the action is visible in the mini-

clip. We use an RMSprop optimizer (Tieleman
and Hinton, 2012) and fine tune the number of
epochs, batch size and size of the LSTM and fully-
connected layers.

6 Evaluation and Results

Table 6 shows the results obtained using the mul-
timodal model for different sets of input features.
The model that uses all the input features available
leads to the best results, improving significantly
over the text-only and video-only methods.4

We find that using only YOLO to find visible
objects does not provide sufficient information to
solve this task. This is due to both the low num-
ber of objects that YOLO is able to detect, and the
fact that not all actions involve objects. For ex-
ample, visible actions from our datasets such as
“get up”, “cut them in half”, “getting ready”, and
“chopped up” cannot be correctly labeled using
only object detection. Consequently, we need to
use additional video information such as Inception
and C3D information.

In general, we find that the text information
plays an important role. ELMo embeddings lead
to better results than LSTM embeddings, with a
relative error rate reduction of 6.8%. This is not
surprising given that ELMo uses two bidirectional
LSTMs and has improved the state-of-the-art in
many NLP tasks (Peters et al., 2018). Conse-
quently, we use ELMo in our multimodal model.

Moreover, the addition of extra information im-
proves the results for both modalities. Specifically,
the addition of context is found to bring improve-

4Significance is measured using a paired t-test: p < 0.005
when compared to the best text-only model; p < 0.0005
when compared to the best video-only model.



Method Input Accuracy Precision Recall F1

BASELINES

Majority Action 0.692 0.692 1.0 0.81

Threshold Concreteness 0.685 0.7 0.954 0.807

ActionG 0.715 0.722 0.956 0.823
Feature-
based
Classifier

ActionG, POS 0.701 0.702 0.986 0.820
ActionG, ContextS 0.725 0.736 0.938 0.825
ActionG, ContextA 0.712 0.722 0.949 0.820
ActionG, Concreteness 0.718 0.729 0.942 0.822
ActionG, ContextS , Concreteness 0.728 0.742 0.932 0.826

LSTM ActionG 0.706 0.753 0.857 0.802
ELMo ActionG 0.726 0.771 0.859 0.813

YOLO Miniclip 0.625 0.619 0.448 0.520

MULTIMODAL NEURAL ARCHITECTURE (FIGURE 5)

ActionE , Inception 0.722 0.765 0.863 0.811
ActionE , Inception, C3D 0.725 0.769 0.869 0.814
ActionE , POS, Inception, C3D 0.731 0.763 0.885 0.820

Multi-
modal
Model

ActionE , ContextS , Inception, C3D 0.725 0.770 0.859 0.812
ActionE , ContextA, Inception, C3D 0.729 0.757 0.895 0.820
ActionE , Concreteness, Inception, C3D 0.723 0.768 0.860 0.811
ActionE , POS, ContextS , Concreteness, Inception, C3D 0.737 0.758 0.911 0.827

Table 6: Results from baselines and our best multimodal method on validation and test data. ActionG indicates ac-
tion representation using GloVe embedding, and ActionE indicates action representation using ELMo embedding.
ContextS indicates sentence-level context, and ContextA indicates action-level context.

ments. The use of POS is also found to be gener-
ally helpful.

7 Conclusion

In this paper, we address the task of identifying
human actions visible in online videos. We fo-
cus on the genre of lifestyle vlogs, and construct
a new dataset consisting of 1,268 miniclips and
14,769 actions out of which 4,340 have been la-
beled as visible. We describe and evaluate sev-
eral text-based and video-based baselines, and in-
troduce a multimodal neural model that leverages
visual and linguistic information as well as addi-
tional information available in the input data. We
show that the multimodal model outperforms the
use of one modality at a time.

A distinctive aspect of this work is that we la-
bel actions in videos based on the language that
accompanies the video. This has the potential to
create a large repository of visual depictions of ac-
tions, with minimal human intervention, covering
a wide spectrum of actions that typically occur in
everyday life.

In future work, we plan to explore addi-

tional representations and architectures to im-
prove the accuracy of our model, and to iden-
tify finer-grained alignments between visual ac-
tions and their verbal descriptions. The dataset
and the code introduced in this paper are pub-
licly available at http://lit.eecs.umich.
edu/downloads.html.
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