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Big Idea

We use paraphrases to analyze contextualized embeddings

Why are paraphrases special?
 They naturally encode phrase semantics...
e ...and word semantics

note of the information provided by
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 The Paraphrase Database 2.0 (PPDB)
 Ganitkevitch et al., 2013; Pavlick et al., 2015

 Word alignment information, automatically generated quality
rating, some human quality ratings
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Phrase-level Embeddings

=

;* " Can BERT d|st|ngwsh petween two phrases that are
| paraphrases and two phrases that are unrelated’? |

 Use phrase-level e

 Average
phrase e

e [ake cosl
embeddi

together
mbeddi

ne simi

Ngs

Mmbeddings
word embeddings to get a

g

arity between two phrase

e Compare cosine similarities to human
annotations (Spearman’s correlation)



Phrase-level Embeddings

| Can BERT distinguish between two ph€rs are
~ paraphrases and two phrases that are unrelated? |
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 Experiment details
 Uncased base model of BERT
e 25,7306 phrase pairs with human annotations
 Compare BERT with w2v trained on Wikipedia




Phrase-level Embeddings
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Word-level Embeddings
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Word-level Embeddings

' " Does BERT recognize that aligned words are more
~ similar than unaligned words?
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 Experiment details
* Only use highest quality paraphrases in PPDB

 Randomly sample 2,500 words from each
category

* For aligned words, only consider 1-1 alignment
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Word-level Embeddings
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Takeaways

« BERT consistently represents paraphrases.

We can use paraphrases to explore other
representation methods!

More In the paper...
* Polysemous vs. non-polysemous words

* One-word pa
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Thank you!
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