

Analyzing the Surprising Variability in Word Embedding Stability Across Languages

Laura Burdick, Jonathan K. Kummerfeld, Rada Mihalcea

setting for the bale: Stability of war embeddings using 5 random seeds in

Least stable embeddings: Korean (GloVe avg. 0.58%)

Introduction

Does stability vary for different languages? Is stability associated with linguistic properties?

- Data
- Wikipedia (40 languages)
- ► Bible (97 languages)

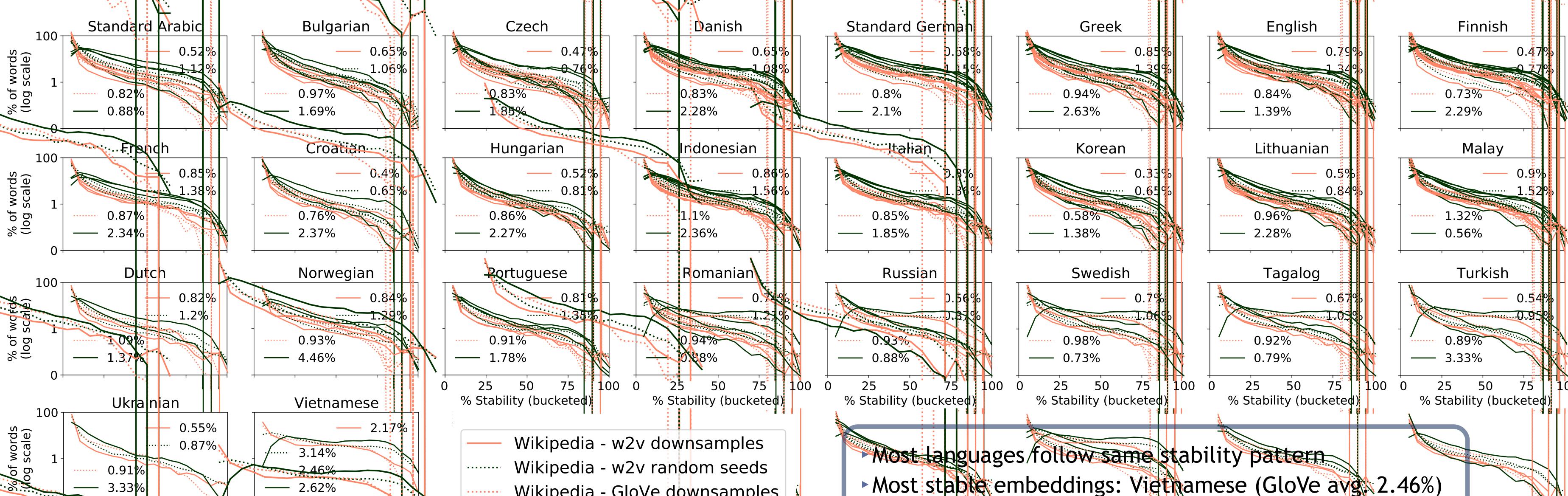
- Why word2vec and GloVe?
- ► These algorithms continue to be used in many situations, including the computational humanities and low-resource languages!

What is Stability?

Stability = percent overlap between ten nearest neighbors in an embedding space

$$stability = \frac{100}{|words|} \sum_{words} \frac{neighbors_0 \cap neighbors_1}{10}$$

- neighbors₀ = ten words most similar to the word in embedding space 0
- neighbors₁ = ten words most similar to the word in embedding space 1


Example: international in 2 embedding spaces Stability = 40%

Model 1	Model 2
metropolitan	ballet
national	metropolitan
egyptian	bard
rhode	chicago
society	national
debut	state
folk	exhibitions
reinstallation	society
chairwoman	whitney
philadelphia	rhode

Stability for Withipedia and the Bible

We compare the stability of embeddings for 26 languages.

- Wikipedia (3 settings): Stability of...
- GloVe embeddings across downsampled corpora
- word2vec (wzv) embeddings across 5 downsampled coreona
- w2v using 5 random seeds on 1 downsampled corpus

Wikipedia - GloVe downsamples

Bible - w2v random seeds

downsampled corpus

26 languages in both Wikipedia and the Bible

Each downsampled corpora 1000 sentences

Regression Modeling

% Stability (bucketed

We use a regression model to predict stability in a language using linguistic properties.

% Stability (bucketed)

- Ridge regression
- ► 37 languages
- Input: 97 WALS properties
- Output: Average stability of all the words in a language
- High R^2 score of 0.96 ± 0.00
- More affixing (suffixing and prefixing) associated with lower stability
- Affixes cause increased word variation
- Languages with no gender system associated with higher stability
- Languages with gender systems have more word forms

Selected WALS Properties Associated with Affixing Case suffixes (9 languages) No case affixes or adpositional clitics (5 languages) % Average Stability Position of Case Affixes Suffixing grouping] (24 languages) | 1 Weakly suffixing (5 languages) Little affixation (5 languages) % Average Stability Prefixing v. Suffixing in Inflectional Languages

Selected WALS Properties Associated with Gender 3rd person singular only (7 languages) No Gender Grouping (12 languages) % Average Stability Gender Distinctions in Independent Personal Pronouns (5 languages) No Gender Grouping (12 languages) % Average Stability Number of Genders